Limiting Distribution of Quadratic Chaos on Graphs ${ }^{1}$

Somabha Mukherjee
University of Pennsylvania

March 23, 2019
${ }^{1}$ Joint work with Bhaswar B. Bhattacharya, Sumit Mukherjee

Outline

(1) Introduction to the Problem
(2) Examples
(3) Results:

4 Where do the Three Summands in the Limit Come From?
(5) Reference

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.
- $T_{n}:=\sum_{1 \leq u<v \leq n} A_{n}(u, v) X_{u} X_{v}$:- Quadratic Chaos on G_{n}.

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.
- $T_{n}:=\sum_{1 \leq u<v \leq n} A_{n}(u, v) X_{u} X_{v}$:- Quadratic Chaos on G_{n}.
- Goal: Find the limiting distribution of T_{n} in the sparse regime: $\mathbb{E} T_{n}=p_{n}^{2}\left|E\left(G_{n}\right)\right|=O(1)$.

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.
- $T_{n}:=\sum_{1 \leq u<v \leq n} A_{n}(u, v) X_{u} X_{v}$:- Quadratic Chaos on G_{n}.
- Goal: Find the limiting distribution of T_{n} in the sparse regime: $\mathbb{E} T_{n}=p_{n}^{2}\left|E\left(G_{n}\right)\right|=O(1)$.

Applications:

- A form similar to T_{n} arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.
- $T_{n}:=\sum_{1 \leq u<v \leq n} A_{n}(u, v) X_{u} X_{v}$:- Quadratic Chaos on G_{n}.
- Goal: Find the limiting distribution of T_{n} in the sparse regime:
$\mathbb{E} T_{n}=p_{n}^{2}\left|E\left(G_{n}\right)\right|=O(1)$.

Applications:

- A form similar to T_{n} arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.
- Asymptotics of T_{n} often used in the study of coincidences, for example, the Birthday problem. What is the probability that there are two friends in a friendship network G_{n} with birthdays on January 1?

Framework, Goal and Some Connections

- G_{n} : sequence of graphs on n vertices, with adjacency matrix A_{n}.
- $\left\{X_{i}\right\}_{1 \leq i \leq n}$: sequence of i.i.d. Bernoulli $\left(p_{n}\right)$ random variables, with $\lim _{n \rightarrow \infty} p_{n}=0$.
- $T_{n}:=\sum_{1 \leq u<v \leq n} A_{n}(u, v) X_{u} X_{v}$:- Quadratic Chaos on G_{n}.
- Goal: Find the limiting distribution of T_{n} in the sparse regime:
$\mathbb{E} T_{n}=p_{n}^{2}\left|E\left(G_{n}\right)\right|=O(1)$.

Applications:

- A form similar to T_{n} arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.
- Asymptotics of T_{n} often used in the study of coincidences, for example, the Birthday problem. What is the probability that there are two friends in a friendship network G_{n} with birthdays on January 1?
- Various graph based nonparametric two-sample tests in Statistics are functions of T_{n}. In particular, the Bahadur slopes of these statistics can be computed using a large deviation theory for T_{n} proved by us.

Outline

(1) Introduction to the Problem

(2) Examples

(3) Results:

4 Where do the Three Summands in the Limit Come From?

(5) Reference

Examples:

Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli $\left(\frac{\lambda}{n}\right)$.

- Complete Graph on n Vertices: $T_{n} \xrightarrow{D}\binom{N}{2}$, where $N \sim \operatorname{Poisson}(\lambda)$.

Examples:

Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli $\left(\frac{\lambda}{n}\right)$.

- Complete Graph on n Vertices: $T_{n} \xrightarrow{D}\binom{N}{2}$, where $N \sim \operatorname{Poisson}(\lambda)$.
- Dense Erdős-Rényi Graphs: $\mathbb{G}(n, p): T_{n} \xrightarrow{D} \operatorname{Binomial}\left(\binom{N}{2}, p\right)$, where $N \sim$ Poisson (λ).

Examples:

Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli $\left(\frac{\lambda}{n}\right)$.

- Complete Graph on n Vertices: $T_{n} \xrightarrow{D}\binom{N}{2}$, where $N \sim \operatorname{Poisson}(\lambda)$.
- Dense Erdős-Rényi Graphs: $\mathbb{G}(n, p): T_{n} \xrightarrow{D} \operatorname{Binomial}\left(\binom{N}{2}, p\right)$, where $N \sim$ Poisson (λ).
- Dense Stochastic Block Models: $\operatorname{SBM}\left(n_{1}, n-n_{1}, p, q\right)$: If $n_{1} / n \rightarrow \alpha$, then $T_{n} \xrightarrow{D} \operatorname{Binomial}\left(\binom{N_{1}}{2}, p\right)+\operatorname{Binomial}\left(\binom{N_{2}}{2}, p\right)+\operatorname{Binomial}\left(N_{1} N_{2}, q\right)$, where $N_{1} \sim \operatorname{Poisson}(\alpha \lambda), N_{2} \sim \operatorname{Poisson}((1-\alpha) \lambda)$ are independent, and the three summands above are independent, given N_{1}, N_{2}.

Examples:

Let X_{1}, X_{2}, \ldots be i.i.d. Bernoulli $\left(\frac{\lambda}{n}\right)$.

- Complete Graph on n Vertices: $T_{n} \xrightarrow{D}\binom{N}{2}$, where $N \sim \operatorname{Poisson}(\lambda)$.
- Dense Erdős-Rényi Graphs: $\mathbb{G}(n, p): T_{n} \xrightarrow{D} \operatorname{Binomial}\left(\binom{N}{2}, p\right)$, where $N \sim$ Poisson (λ).
- Dense Stochastic Block Models: $\operatorname{SBM}\left(n_{1}, n-n_{1}, p, q\right)$: If $n_{1} / n \rightarrow \alpha$, then $T_{n} \xrightarrow{D} \operatorname{Binomial}\left(\binom{N_{1}}{2}, p\right)+\operatorname{Binomial}\left(\binom{N_{2}}{2}, p\right)+\operatorname{Binomial}\left(N_{1} N_{2}, q\right)$, where $N_{1} \sim \operatorname{Poisson}(\alpha \lambda), N_{2} \sim \operatorname{Poisson}((1-\alpha) \lambda)$ are independent, and the three summands above are independent, given N_{1}, N_{2}.
- Disjoint Union of n many n-stars: (A Sparse Graph Example): $T_{n} \xrightarrow{D} \operatorname{Poisson}(N)$, where $N \sim \operatorname{Poisson}(\lambda)$.

Outline

(1) Introduction to the Problem

(2) Examples
(3) Results:

4 Where do the Three Summands in the Limit Come From?

(5) Reference

Assumptions:

- Stretched Graphon associated with $G_{n}: W_{n}:\left[0, n p_{n}\right]^{2} \mapsto[0,1]$ given by:

$$
W_{n}(x, y)=A_{n}\left(\left\lceil x / p_{n}\right\rceil,\left\lceil y / p_{n}\right\rceil\right) .
$$

Assumptions:

- Stretched Graphon associated with $G_{n}: W_{n}:\left[0, n p_{n}\right]^{2} \mapsto[0,1]$ given by:

$$
W_{n}(x, y)=A_{n}\left(\left\lceil x / p_{n}\right\rceil,\left\lceil y / p_{n}\right\rceil\right) .
$$

- Stretched Degree Function of $G_{n}: d_{n}(x):=\int_{0}^{\infty} W_{n}(x, y) d y$.

Assumptions:

- Stretched Graphon associated with $G_{n}: W_{n}:\left[0, n p_{n}\right]^{2} \mapsto[0,1]$ given by:

$$
W_{n}(x, y)=A_{n}\left(\left\lceil x / p_{n}\right\rceil,\left\lceil y / p_{n}\right\rceil\right) .
$$

- Stretched Degree Function of $G_{n}: d_{n}(x):=\int_{0}^{\infty} W_{n}(x, y) d y$.
- W_{n} converges in cut norm to a symmetric, integrable function $W:[0, \infty)^{2} \mapsto[0,1]$, i.e. for all $K \in \mathbb{N}$ large enough,

$$
\sup _{f, g:[0, K] \mapsto[-1,1]}\left|\int_{[0, K]^{2}}\left(W_{n}(x, y)-W(x, y)\right) f(x) g(y) d x d y\right| \rightarrow 0 .
$$

Assumptions:

- Stretched Graphon associated with $G_{n}: W_{n}:\left[0, n p_{n}\right]^{2} \mapsto[0,1]$ given by:

$$
W_{n}(x, y)=A_{n}\left(\left\lceil x / p_{n}\right\rceil,\left\lceil y / p_{n}\right\rceil\right) .
$$

- Stretched Degree Function of $G_{n}: d_{n}(x):=\int_{0}^{\infty} W_{n}(x, y) d y$.
- W_{n} converges in cut norm to a symmetric, integrable function $W:[0, \infty)^{2} \mapsto[0,1]$, i.e. for all $K \in \mathbb{N}$ large enough,

$$
\sup _{f, g:[0, K] \mapsto[-1,1]}\left|\int_{[0, K]^{2}}\left(W_{n}(x, y)-W(x, y)\right) f(x) g(y) d x d y\right| \rightarrow 0 .
$$

- $\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{2} \int_{K}^{\infty} \int_{K}^{\infty} W_{n}(x, y) d x d y=\lambda$.

Assumptions:

- Stretched Graphon associated with $G_{n}: W_{n}:\left[0, n p_{n}\right]^{2} \mapsto[0,1]$ given by:

$$
W_{n}(x, y)=A_{n}\left(\left\lceil x / p_{n}\right\rceil,\left\lceil y / p_{n}\right\rceil\right) .
$$

- Stretched Degree Function of $G_{n}: d_{n}(x):=\int_{0}^{\infty} W_{n}(x, y) d y$.
- W_{n} converges in cut norm to a symmetric, integrable function $W:[0, \infty)^{2} \mapsto[0,1]$, i.e. for all $K \in \mathbb{N}$ large enough,

$$
\sup _{f, g:[0, K] \mapsto[-1,1]}\left|\int_{[0, K]^{2}}\left(W_{n}(x, y)-W(x, y)\right) f(x) g(y) d x d y\right| \rightarrow 0
$$

- $\lim _{K \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{2} \int_{K}^{\infty} \int_{K}^{\infty} W_{n}(x, y) d x d y=\lambda$.
- There exists an integrable function $d:[0, \infty) \mapsto[0, \infty)$, such that for all $K \in \mathbb{N}$ large enough,

$$
\left(U_{K}, d_{n}\left(U_{K}\right)\right) \xrightarrow{D}\left(U_{K}, d\left(U_{K}\right)\right),
$$

where U_{K} is a uniform random variable on the interval $[0, K]$.

Main Result:

Under the assumptions in the previous slide, $T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3}$, where

- $Q_{3} \sim \operatorname{Poisson}(\lambda)$, and is independent of $\left(Q_{1}, Q_{2}\right)$,
- Q_{2} conditional on some random variable R_{2} has a $\operatorname{Poisson}\left(R_{2}\right)$ distribution,
- The joint moment generating function of Q_{1} and R_{2} is given by:

$$
\mathbb{E} e^{-s Q_{1}-t R_{2}}=\mathbb{E} \exp \left\{\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \phi_{W, s}(x, y) d N(x) d N(y)-t \int_{0}^{\infty} \Delta(x) d N(x)\right\}
$$

where
(3) $\phi_{W, s}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-s}\right)$,
(3) $\Delta(x)=d(x)-\int_{0}^{\infty} W(x, y) d y$ and
(0) $\{N(t): t \geq 0\}$ is a homogeneous Poisson process of rate 1 .

Main Result:

Under the assumptions in the previous slide, $T_{n} \xrightarrow{D} Q_{1}+Q_{2}+Q_{3}$, where

- $Q_{3} \sim \operatorname{Poisson}(\lambda)$, and is independent of $\left(Q_{1}, Q_{2}\right)$,
- Q_{2} conditional on some random variable R_{2} has a $\operatorname{Poisson}\left(R_{2}\right)$ distribution,
- The joint moment generating function of Q_{1} and R_{2} is given by:

$$
\mathbb{E} e^{-s Q_{1}-t R_{2}}=\mathbb{E} \exp \left\{\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty} \phi_{W, s}(x, y) d N(x) d N(y)-t \int_{0}^{\infty} \Delta(x) d N(x)\right\}
$$

where
(3) $\phi_{W, s}(x, y)=\log \left(1-W(x, y)+W(x, y) e^{-s}\right)$,
(3) $\Delta(x)=d(x)-\int_{0}^{\infty} W(x, y) d y$ and
(0) $\{N(t): t \geq 0\}$ is a homogeneous Poisson process of rate 1 .

Dense Graphs and a Converse

If G_{n} is a sequence of dense graphs converging in cut distance to a graphon W, then $Q_{2}=Q_{3}=0$ and $\Delta \equiv 0$. Conversely, for any sequence of dense graphs with $p_{n}^{2}\left|E\left(G_{n}\right)\right|=O(1)$, the limiting distribution of T_{n}, if exists, must be of the above form for some symmetric, measurable, integrable $W:[0, \infty)^{2} \mapsto[0,1]$.

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .
- It holds when X_{1}, X_{2}, \ldots are i.i.d. non-negative integer valued random variables with $p_{n}:=\mathbb{P}\left(X_{1}=1\right) \rightarrow 0$, such that $\left|\mathbb{E}\left(G_{n}\right)\right| p_{n}^{2}=\Theta(1)$ and $\lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{1}}{p_{n}}=1$.

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .
- It holds when X_{1}, X_{2}, \ldots are i.i.d. non-negative integer valued random variables with $p_{n}:=\mathbb{P}\left(X_{1}=1\right) \rightarrow 0$, such that $\left|\mathbb{E}\left(G_{n}\right)\right| p_{n}^{2}=\Theta(1)$ and $\lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{1}}{p_{n}}=1$.

Examples of Such a Distribution

- Sparse Binomial: $\operatorname{Bin}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$.

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .
- It holds when X_{1}, X_{2}, \ldots are i.i.d. non-negative integer valued random variables with $p_{n}:=\mathbb{P}\left(X_{1}=1\right) \rightarrow 0$, such that $\left|\mathbb{E}\left(G_{n}\right)\right| p_{n}^{2}=\Theta(1)$ and $\lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{1}}{p_{n}}=1$.

Examples of Such a Distribution

- Sparse Binomial: $\operatorname{Bin}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$.
- Sparse Poisson: $\operatorname{Pois}\left(\theta_{n}\right)$, where $\theta_{n} \rightarrow 0$.

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .
- It holds when X_{1}, X_{2}, \ldots are i.i.d. non-negative integer valued random variables with $p_{n}:=\mathbb{P}\left(X_{1}=1\right) \rightarrow 0$, such that $\left|\mathbb{E}\left(G_{n}\right)\right| p_{n}^{2}=\Theta(1)$ and $\lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{1}}{p_{n}}=1$.

Examples of Such a Distribution

- Sparse Binomial: $\operatorname{Bin}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$.
- Sparse Poisson: Pois $\left(\theta_{n}\right)$, where $\theta_{n} \rightarrow 0$.
- Sparse Negative Binomial: $\mathrm{NB}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$. (Number of successes in independent trials, with probability θ_{n} of success, observed until n failures.)

A Universality Result:

- Our main result holds when the X_{i} 's come from distributions slightly more general than Bernoulli with mean going to 0 .
- It holds when X_{1}, X_{2}, \ldots are i.i.d. non-negative integer valued random variables with $p_{n}:=\mathbb{P}\left(X_{1}=1\right) \rightarrow 0$, such that $\left|\mathbb{E}\left(G_{n}\right)\right| p_{n}^{2}=\Theta(1)$ and $\lim _{n \rightarrow \infty} \frac{\mathbb{E} X_{1}}{p_{n}}=1$.

Examples of Such a Distribution

- Sparse Binomial: $\operatorname{Bin}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$.
- Sparse Poisson: $\operatorname{Pois}\left(\theta_{n}\right)$, where $\theta_{n} \rightarrow 0$.
- Sparse Negative Binomial: $\operatorname{NB}\left(n, \theta_{n}\right)$, where $n \theta_{n} \rightarrow 0$. (Number of successes in independent trials, with probability θ_{n} of success, observed until n failures.)
- Sparse Hypergeometric: $\mathrm{HG}\left(N_{n}, K_{n}, m_{n}\right)$, where $m_{n} K_{n} / N_{n} \rightarrow 0$. (Number of successes in m_{n} draws WOR from a population of size N_{n} having exactly K_{n} success states.)

Outline

(1) Introduction to the Problem
(2) Examples
(3) Results:

4 Where do the Three Summands in the Limit Come From?
(5) Reference

Answer: By Partitioning the Graph

$$
\text { - } V_{\varepsilon}\left(G_{n}\right):=\left\{v \in V\left(G_{n}\right): \operatorname{deg}(v)>\frac{\varepsilon}{\rho_{n}}\right\} .
$$

Answer: By Partitioning the Graph

$$
\begin{aligned}
& \text { - } V_{\varepsilon}\left(G_{n}\right):=\left\{v \in V\left(G_{n}\right): \operatorname{deg}(v)>\frac{\varepsilon}{p_{n}}\right\} . \\
& \text { - } T_{n, 1}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)} A_{n}(u, v) X_{u} X_{v}, \\
& \text { - } T_{n, 2}:=\sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v},
\end{aligned}
$$

$$
\text { - } T_{n, 3}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right)^{c}, v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v} \text {. }
$$

Answer: By Partitioning the Graph

$$
\begin{aligned}
& \text { - } V_{\varepsilon}\left(G_{n}\right):=\left\{v \in V\left(G_{n}\right): \operatorname{deg}(v)>\frac{\varepsilon}{p_{n}}\right\} . \\
& \text { - } T_{n, 1}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)} A_{n}(u, v) X_{u} X_{v}, \\
& \text { - } T_{n, 2}:=\sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v},
\end{aligned}
$$

- $T_{n, 3}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right)^{c}, v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v}$.
- Step 1: $T_{n, 3}$ is asymptotically independent of ($T_{n, 1}, T_{n, 2}$) in terms of mixed moments, i.e.

$$
\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b} T_{n, 3}^{c}\right)-\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b}\right) \mathbb{E}\left(T_{n, 3}^{c}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ followed by $\varepsilon \rightarrow 0$.

Answer: By Partitioning the Graph

- $V_{\varepsilon}\left(G_{n}\right):=\left\{v \in V\left(G_{n}\right): \operatorname{deg}(v)>\frac{\varepsilon}{p_{n}}\right\}$.
- $T_{n, 1}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)} A_{n}(u, v) X_{u} X_{v}$,
- $T_{n, 2}:=\sum_{u \in v_{\varepsilon}\left(G_{n}\right), v \in v_{\varepsilon}\left(G_{n}\right) c} A_{n}(u, v) X_{u} X_{v}$,

- $T_{n, 3}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right)^{c}, v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v}$.
- Step 1: $T_{n, 3}$ is asymptotically independent of ($T_{n, 1}, T_{n, 2}$) in terms of mixed moments, i.e.

$$
\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b} T_{n, 3}^{c}\right)-\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b}\right) \mathbb{E}\left(T_{n, 3}^{c}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ followed by $\varepsilon \rightarrow 0$.

- The Poisson term Q_{3} comes as a limit of $T_{n, 3}$.

Answer: By Partitioning the Graph

- $V_{\varepsilon}\left(G_{n}\right):=\left\{v \in V\left(G_{n}\right): \operatorname{deg}(v)>\frac{\varepsilon}{p_{n}}\right\}$.
- $T_{n, 1}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)} A_{n}(u, v) X_{u} X_{v}$,
- $T_{n, 2}:=\sum_{u \in V_{\varepsilon}\left(G_{n}\right), v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v}$,

- $T_{n, 3}:=\frac{1}{2} \sum_{u \in V_{\varepsilon}\left(G_{n}\right)^{c}, v \in V_{\varepsilon}\left(G_{n}\right)^{c}} A_{n}(u, v) X_{u} X_{v}$.
- Step 1: $T_{n, 3}$ is asymptotically independent of ($T_{n, 1}, T_{n, 2}$) in terms of mixed moments, i.e.

$$
\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b} T_{n, 3}^{c}\right)-\mathbb{E}\left(T_{n, 1}^{a} T_{n, 2}^{b}\right) \mathbb{E}\left(T_{n, 3}^{c}\right) \rightarrow 0
$$

as $n \rightarrow \infty$ followed by $\varepsilon \rightarrow 0$.

- The Poisson term Q_{3} comes as a limit of $T_{n, 3}$.
- $\left(Q_{1}, Q_{2}\right)$ appears as the limit of $\left(T_{n, 1}, T_{n, 2}\right)$, by an edge-independent random graph planting argument.

Outline

(1) Introduction to the Problem

(2) Examples
(3) Results:

4 Where do the Three Summands in the Limit Come From?

(5) Reference

References

(1) C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, Advances in Mathematics, Vol. 219, 1801-1851, 2009.
(2) C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics, Annals of Mathematics, Vol. 176, 151-219, 2012.

0 L. Lovász, Large Networks and Graph Limits, Colloquium Publications, Vol. 60, 2012.
(1) B. B. Bhattacharya, S. Mukherjee, and S. Mukherjee, Birthday paradox, monochromatic subgraphs, and the second moment phenomenon, arXiv:1711.01465, 2017.

