# Limiting Distribution of Quadratic Chaos on Graphs<sup>1</sup>

#### Somabha Mukherjee

University of Pennsylvania

March 23, 2019

<sup>1</sup>Joint work with Bhaswar B. Bhattacharya, Sumit Mukherjee

## Outline

#### Introduction to the Problem

#### 2 Examples

#### 3 Results:

Where do the Three Summands in the Limit Come From?

#### 5 Reference

э

イロト イヨト イヨト イヨト

•  $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .

イロト イヨト イヨト イヨト

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .

ヘロア 人間 アメヨア 人口 ア

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .
- $T_n := \sum_{1 \le u < v \le n} A_n(u, v) X_u X_v :-$ Quadratic Chaos on  $G_n$ .

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .
- $T_n := \sum_{1 \le u < v \le n} A_n(u, v) X_u X_v :=$ Quadratic Chaos on  $G_n$ .
- Goal: Find the limiting distribution of  $T_n$  in the sparse regime:  $\mathbb{E}T_n = p_n^2 |\mathcal{E}(G_n)| = O(1).$

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .
- $T_n := \sum_{1 \le u < v \le n} A_n(u, v) X_u X_v :=$ Quadratic Chaos on  $G_n$ .
- Goal: Find the limiting distribution of  $T_n$  in the sparse regime:  $\mathbb{E}T_n = p_n^2 |E(G_n)| = O(1).$

### Applications:

• A form similar to  $T_n$  arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .
- $T_n := \sum_{1 \le u < v \le n} A_n(u, v) X_u X_v :=$ Quadratic Chaos on  $G_n$ .
- Goal: Find the limiting distribution of  $T_n$  in the sparse regime:  $\mathbb{E}T_n = p_n^2 |\mathcal{E}(G_n)| = O(1).$

### Applications:

- A form similar to  $T_n$  arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.
- Asymptotics of  $T_n$  often used in the study of coincidences, for example, the Birthday problem. What is the probability that there are two friends in a friendship network  $G_n$  with birthdays on January 1?

- $G_n$ : sequence of graphs on *n* vertices, with adjacency matrix  $A_n$ .
- $\{X_i\}_{1 \le i \le n}$ : sequence of i.i.d. Bernoulli $(p_n)$  random variables, with  $\lim_{n \to \infty} p_n = 0$ .
- $T_n := \sum_{1 \le u < v \le n} A_n(u, v) X_u X_v :=$ Quadratic Chaos on  $G_n$ .
- Goal: Find the limiting distribution of  $T_n$  in the sparse regime:  $\mathbb{E}T_n = p_n^2 |E(G_n)| = O(1).$

### Applications:

- A form similar to  $T_n$  arises as the Hamiltonian of the Ising model in Statistical Physics, in absence of an external magnetic field.
- Asymptotics of  $T_n$  often used in the study of coincidences, for example, the Birthday problem. What is the probability that there are two friends in a friendship network  $G_n$  with birthdays on January 1?
- Various graph based nonparametric two-sample tests in Statistics are functions of  $T_n$ . In particular, the Bahadur slopes of these statistics can be computed using a large deviation theory for  $T_n$  proved by us.

#### Introduction to the Problem





Where do the Three Summands in the Limit Come From?

#### 5 Reference

э

イロト イヨト イヨト イヨト

• Complete Graph on n Vertices:  $T_n \xrightarrow{D} {N \choose 2}$ , where  $N \sim \text{Poisson}(\lambda)$ .

- Complete Graph on n Vertices:  $T_n \xrightarrow{D} {N \choose 2}$ , where  $N \sim \text{Poisson}(\lambda)$ .
- Dense Erdős-Rényi Graphs:  $\mathbb{G}(n,p): T_n \xrightarrow{D} \text{Binomial}\left(\binom{N}{2},p\right)$ , where  $N \sim \text{Poisson}(\lambda)$ .

< ロ > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Complete Graph on n Vertices:  $T_n \xrightarrow{D} {N \choose 2}$ , where  $N \sim \text{Poisson}(\lambda)$ .
- Dense Erdős-Rényi Graphs:  $\mathbb{G}(n,p)$ :  $T_n \xrightarrow{D} \text{Binomial}\left(\binom{N}{2},p\right)$ , where  $N \sim \text{Poisson}(\lambda)$ .
- Dense Stochastic Block Models:  $SBM(n_1, n n_1, p, q)$ : If  $n_1/n \rightarrow \alpha$ , then

$$T_n \xrightarrow{D} \operatorname{Binomial}\left(\binom{N_1}{2}, p\right) + \operatorname{Binomial}\left(\binom{N_2}{2}, p\right) + \operatorname{Binomial}\left(N_1N_2, q\right) ,$$

where  $N_1 \sim \text{Poisson}(\alpha \lambda)$ ,  $N_2 \sim \text{Poisson}((1 - \alpha)\lambda)$  are independent, and the three summands above are independent, given  $N_1, N_2$ .

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

- Complete Graph on n Vertices:  $T_n \xrightarrow{D} {N \choose 2}$ , where  $N \sim \text{Poisson}(\lambda)$ .
- Dense Erdős-Rényi Graphs:  $\mathbb{G}(n,p)$ :  $T_n \xrightarrow{D} \text{Binomial}\left(\binom{N}{2},p\right)$ , where  $N \sim \text{Poisson}(\lambda)$ .
- Dense Stochastic Block Models:  $SBM(n_1, n n_1, p, q)$ : If  $n_1/n \rightarrow \alpha$ , then

$$T_n \xrightarrow{D} \operatorname{Binomial}\left(\binom{N_1}{2}, p\right) + \operatorname{Binomial}\left(\binom{N_2}{2}, p\right) + \operatorname{Binomial}\left(N_1N_2, q\right) ,$$

where  $N_1 \sim \text{Poisson}(\alpha \lambda)$ ,  $N_2 \sim \text{Poisson}((1 - \alpha)\lambda)$  are independent, and the three summands above are independent, given  $N_1, N_2$ .

• Disjoint Union of *n* many *n*-stars: (A Sparse Graph Example):  $T_n \xrightarrow{D} \text{Poisson}(N)$ , where  $N \sim \text{Poisson}(\lambda)$ .

◆□ > ◆□ > ◆目 > ◆目 > ● ● ● ● ●

#### Introduction to the Problem

### 2 Examples



Where do the Three Summands in the Limit Come From?

#### 5 Reference

イロト イヨト イヨト イヨト

э

• Stretched Graphon associated with  $G_n$ :  $W_n : [0, np_n]^2 \mapsto [0, 1]$  given by:

 $W_n(x,y) = A_n\left(\lceil x/p_n \rceil, \lceil y/p_n \rceil\right)$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

- Stretched Graphon associated with  $G_n$ :  $W_n : [0, np_n]^2 \mapsto [0, 1]$  given by:  $W_n(x, y) = A_n(\lceil x/p_n \rceil, \lceil y/p_n \rceil)$ .
- Stretched Degree Function of  $G_n$ :  $d_n(x) := \int_0^\infty W_n(x, y) dy$ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ ・

• Stretched Graphon associated with  $G_n$ :  $W_n : [0, np_n]^2 \mapsto [0, 1]$  given by:

$$W_n(x,y) = A_n\left(\lceil x/p_n \rceil, \lceil y/p_n \rceil\right)$$
.

- Stretched Degree Function of  $G_n$ :  $d_n(x) := \int_0^\infty W_n(x, y) dy$ .
- $W_n$  converges in cut norm to a symmetric, integrable function  $W : [0,\infty)^2 \mapsto [0,1]$ , i.e. for all  $K \in \mathbb{N}$  large enough,

$$\sup_{f,g:[0,\mathcal{K}]\mapsto[-1,1]}\left|\int_{[0,\mathcal{K}]^2} \left(W_n(x,y)-W(x,y)\right)f(x)g(y)dxdy\right|\to 0.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Stretched Graphon associated with  $G_n$ :  $W_n : [0, np_n]^2 \mapsto [0, 1]$  given by:

$$W_n(x,y) = A_n\left(\lceil x/p_n \rceil, \lceil y/p_n \rceil\right)$$
.

- Stretched Degree Function of  $G_n$ :  $d_n(x) := \int_0^\infty W_n(x, y) dy$ .
- $W_n$  converges in cut norm to a symmetric, integrable function  $W : [0,\infty)^2 \mapsto [0,1]$ , i.e. for all  $K \in \mathbb{N}$  large enough,

$$\sup_{f,g:[0,\mathcal{K}]\mapsto [-1,1]} \left| \int_{[0,\mathcal{K}]^2} \left( W_n(x,y) - W(x,y) \right) f(x)g(y) dx dy \right| \to 0 \ .$$

• 
$$\lim_{K\to\infty} \lim_{n\to\infty} \frac{1}{2} \int_K^\infty \int_K^\infty W_n(x,y) dx dy = \lambda.$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト … ヨ

• Stretched Graphon associated with  $G_n$ :  $W_n : [0, np_n]^2 \mapsto [0, 1]$  given by:

$$W_n(x,y) = A_n\left(\lceil x/p_n \rceil, \lceil y/p_n \rceil\right)$$
.

- Stretched Degree Function of  $G_n$ :  $d_n(x) := \int_0^\infty W_n(x, y) dy$ .
- $W_n$  converges in cut norm to a symmetric, integrable function  $W: [0,\infty)^2 \mapsto [0,1]$ , i.e. for all  $K \in \mathbb{N}$  large enough,

$$\sup_{f,g:[0,K]\mapsto [-1,1]}\left|\int_{[0,K]^2} \left(W_n(x,y)-W(x,y)\right)f(x)g(y)dxdy\right|\to 0.$$

- $\lim_{K\to\infty} \lim_{n\to\infty} \frac{1}{2} \int_K^\infty \int_K^\infty W_n(x,y) dx dy = \lambda.$
- There exists an integrable function  $d: [0,\infty) \mapsto [0,\infty)$ , such that for all  $K \in \mathbb{N}$  large enough,

$$(U_{\mathcal{K}}, d_n(U_{\mathcal{K}})) \xrightarrow{D} (U_{\mathcal{K}}, d(U_{\mathcal{K}}))$$
,

where  $U_{K}$  is a uniform random variable on the interval [0, K].

# Main Result:

Under the assumptions in the previous slide,  $T_n \xrightarrow{D} Q_1 + Q_2 + Q_3$ , where

- $Q_3 \sim {\sf Poisson}(\lambda)$ , and is independent of  $(Q_1,Q_2)$  ,
- $Q_2$  conditional on some random variable  $R_2$  has a Poisson $(R_2)$  distribution,
- The joint moment generating function of  $Q_1$  and  $R_2$  is given by:

$$\mathbb{E}e^{-sQ_1-tR_2} = \mathbb{E}\exp\left\{\frac{1}{2}\int_0^\infty\int_0^\infty\phi_{W,s}(x,y)dN(x)dN(y) - t\int_0^\infty\Delta(x)dN(x)\right\}$$

where

•  $\phi_{W,s}(x,y) = \log (1 - W(x,y) + W(x,y)e^{-s}),$ •  $\Delta(x) = d(x) - \int_0^\infty W(x,y)dy$  and •  $\{N(t) : t \ge 0\}$  is a homogeneous Poisson process of rate 1.

# Main Result:

Under the assumptions in the previous slide,  $T_n \xrightarrow{D} Q_1 + Q_2 + Q_3$ , where

- ${\it Q}_3 \sim {\sf Poisson}(\lambda)$ , and is independent of  $({\it Q}_1, {\it Q}_2)$  ,
- $Q_2$  conditional on some random variable  $R_2$  has a Poisson $(R_2)$  distribution,
- The joint moment generating function of  $Q_1$  and  $R_2$  is given by:

$$\mathbb{E}e^{-sQ_1-tR_2} = \mathbb{E}\exp\left\{\frac{1}{2}\int_0^\infty\int_0^\infty\phi_{W,s}(x,y)dN(x)dN(y) - t\int_0^\infty\Delta(x)dN(x)\right\}$$

where

#### Dense Graphs and a Converse

If  $G_n$  is a sequence of dense graphs converging in cut distance to a graphon W, then  $Q_2 = Q_3 = 0$  and  $\Delta \equiv 0$ . Conversely, for any sequence of dense graphs with  $p_n^2 |E(G_n)| = O(1)$ , the limiting distribution of  $T_n$ , if exists, must be of the above form for some symmetric, measurable, integrable  $W : [0, \infty)^2 \mapsto [0, 1]$ .

• Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.

イロト イヨト イヨト イヨト

- Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.
- It holds when  $X_1, X_2, \ldots$  are i.i.d. non-negative integer valued random variables with  $p_n := \mathbb{P}(X_1 = 1) \to 0$ , such that  $|\mathbb{E}(G_n)|p_n^2 = \Theta(1)$  and  $\lim_{n\to\infty} \frac{\mathbb{E}X_1}{p_n} = 1$ .

- Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.
- It holds when  $X_1, X_2, \ldots$  are i.i.d. non-negative integer valued random variables with  $p_n := \mathbb{P}(X_1 = 1) \to 0$ , such that  $|\mathbb{E}(G_n)|p_n^2 = \Theta(1)$  and  $\lim_{n\to\infty} \frac{\mathbb{E}X_1}{p_n} = 1$ .

### Examples of Such a Distribution

• Sparse Binomial: Bin $(n, \theta_n)$ , where  $n\theta_n \rightarrow 0$ .

- Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.
- It holds when  $X_1, X_2, \ldots$  are i.i.d. non-negative integer valued random variables with  $p_n := \mathbb{P}(X_1 = 1) \to 0$ , such that  $|\mathbb{E}(G_n)|p_n^2 = \Theta(1)$  and  $\lim_{n\to\infty} \frac{\mathbb{E}X_1}{p_n} = 1$ .

#### Examples of Such a Distribution

- Sparse Binomial: Bin $(n, \theta_n)$ , where  $n\theta_n \to 0$ .
- Sparse Poisson:  $Pois(\theta_n)$ , where  $\theta_n \to 0$ .

- Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.
- It holds when  $X_1, X_2, \ldots$  are i.i.d. non-negative integer valued random variables with  $p_n := \mathbb{P}(X_1 = 1) \to 0$ , such that  $|\mathbb{E}(G_n)|p_n^2 = \Theta(1)$  and  $\lim_{n\to\infty} \frac{\mathbb{E}X_1}{p_n} = 1$ .

### Examples of Such a Distribution

- Sparse Binomial: Bin $(n, \theta_n)$ , where  $n\theta_n \to 0$ .
- Sparse Poisson:  $Pois(\theta_n)$ , where  $\theta_n \to 0$ .
- Sparse Negative Binomial: NB $(n, \theta_n)$ , where  $n\theta_n \rightarrow 0$ . (Number of successes in independent trials, with probability  $\theta_n$  of success, observed until *n* failures.)

- Our main result holds when the X<sub>i</sub>'s come from distributions slightly more general than Bernoulli with mean going to 0.
- It holds when  $X_1, X_2, \ldots$  are i.i.d. non-negative integer valued random variables with  $p_n := \mathbb{P}(X_1 = 1) \to 0$ , such that  $|\mathbb{E}(G_n)|p_n^2 = \Theta(1)$  and  $\lim_{n\to\infty} \frac{\mathbb{E}X_1}{p_n} = 1$ .

### Examples of Such a Distribution

- Sparse Binomial: Bin $(n, \theta_n)$ , where  $n\theta_n \to 0$ .
- Sparse Poisson:  $Pois(\theta_n)$ , where  $\theta_n \to 0$ .
- Sparse Negative Binomial: NB $(n, \theta_n)$ , where  $n\theta_n \rightarrow 0$ . (Number of successes in independent trials, with probability  $\theta_n$  of success, observed until *n* failures.)
- Sparse Hypergeometric: HG(N<sub>n</sub>, K<sub>n</sub>, m<sub>n</sub>), where m<sub>n</sub>K<sub>n</sub>/N<sub>n</sub> → 0. (Number of successes in m<sub>n</sub> draws WOR from a population of size N<sub>n</sub> having exactly K<sub>n</sub> success states.)

#### Introduction to the Problem

#### 2 Examples

#### 3 Results:

#### Where do the Three Summands in the Limit Come From?

#### 5 Reference

臣

• 
$$V_{\varepsilon}(G_n) := \left\{ v \in V(G_n) : \deg(v) > \frac{\varepsilon}{\rho_n} \right\}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト



E

• 
$$V_{\varepsilon}(G_n) := \left\{ v \in V(G_n) : \deg(v) > \frac{\varepsilon}{p_n} \right\}.$$
  
•  $T_{n,1} := \frac{1}{2} \sum_{u \in V_{\varepsilon}(G_n), v \in V_{\varepsilon}(G_n)} A_n(u, v) X_u X_v,$   
•  $T_{n,2} := \sum_{u \in V_{\varepsilon}(G_n), v \in V_{\varepsilon}(G_n)^c} A_n(u, v) X_u X_v,$   
•  $T_{n,3} := \frac{1}{2} \sum_{u \in V_{\varepsilon}(G_n)^c, v \in V_{\varepsilon}(G_n)^c} A_n(u, v) X_u X_v.$ 



æ

イロト イポト イヨト イヨト



• 
$$T_{n,2} := \sum_{u \in V_{\varepsilon}(G_n), v \in V_{\varepsilon}(G_n)^c} A_n(u,v) X_u X_v$$

• 
$$T_{n,3} := \frac{1}{2} \sum_{u \in V_{\varepsilon}(G_n)^c, v \in V_{\varepsilon}(G_n)^c} A_n(u,v) X_u X_v.$$

• Step 1:  $T_{n,3}$  is asymptotically independent of  $(T_{n,1}, T_{n,2})$  in terms of mixed moments, i.e.

$$\mathbb{E}(T^a_{n,1}T^b_{n,2}T^c_{n,3}) - \mathbb{E}(T^a_{n,1}T^b_{n,2})\mathbb{E}(T^c_{n,3}) \to 0$$

《曰》《圖》《臣》《臣》 三臣

as  $n \to \infty$  followed by  $\varepsilon \to 0$ .







• 
$$T_{n,3} := \frac{1}{2} \sum_{u \in V_{\varepsilon}(G_n)^c, v \in V_{\varepsilon}(G_n)^c} A_n(u, v) X_u X_v.$$

• Step 1:  $T_{n,3}$  is asymptotically independent of  $(T_{n,1}, T_{n,2})$  in terms of mixed moments, i.e.

 $\mathbb{E}(T^a_{n,1}T^b_{n,2}T^c_{n,3}) - \mathbb{E}(T^a_{n,1}T^b_{n,2})\mathbb{E}(T^c_{n,3}) \to 0$ 

◆□▶ ◆□▶ ◆注▶ ◆注▶ ─ 注 = のへで

as  $n \to \infty$  followed by  $\varepsilon \to 0$ .

• The Poisson term  $Q_3$  comes as a limit of  $T_{n,3}$ .



• 
$$T_{n,2} := \sum_{u \in V_{\varepsilon}(G_n), v \in V_{\varepsilon}(G_n)^c} A_n(u,v) X_u X_v$$

• 
$$T_{n,3} := \frac{1}{2} \sum_{u \in V_{\varepsilon}(G_n)^c, v \in V_{\varepsilon}(G_n)^c} A_n(u,v) X_u X_v.$$

• Step 1:  $T_{n,3}$  is asymptotically independent of  $(T_{n,1}, T_{n,2})$  in terms of mixed moments, i.e.

 $\mathbb{E}(T^a_{n,1}T^b_{n,2}T^c_{n,3}) - \mathbb{E}(T^a_{n,1}T^b_{n,2})\mathbb{E}(T^c_{n,3}) \to 0$ 

as  $n \to \infty$  followed by  $\varepsilon \to 0$ .

- The Poisson term  $Q_3$  comes as a limit of  $T_{n,3}$ .
- (Q<sub>1</sub>, Q<sub>2</sub>) appears as the limit of (T<sub>n,1</sub>, T<sub>n,2</sub>), by an edge-independent random graph planting argument.



# Outline

#### Introduction to the Problem

### 2 Examples

#### 3 Results:

#### Where do the Three Summands in the Limit Come From?

### 5 Reference

臣

< ロ > < 四 > < 回 > < 回 > < 回 > 、

- C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, *Advances in Mathematics*, Vol. 219, 1801–1851, 2009.
- C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vesztergombi, Convergent sequences of dense graphs II. Multiway cuts and statistical physics, *Annals of Mathematics*, Vol. 176, 151–219, 2012.
- L. Lovász, Large Networks and Graph Limits, Colloquium Publications, Vol. 60, 2012.
- B. B. Bhattacharya, S. Mukherjee, and S. Mukherjee, Birthday paradox, monochromatic subgraphs, and the second moment phenomenon, arXiv:1711.01465, 2017.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ