Limiting Distributions and Large Deviations of Motif Counts in Randomly Colored Graphs ${ }^{1}$

Somabha Mukherjee
University of Pennsylvania

November 16, 2018
${ }^{1}$ Joint work with Bhaswar B. Bhattacharya, Sumit Mukherjee

Outline

(1) Introduction

(2) Asymptotic Results

(3) Application to Erdős-Renyi Random Graphs

4 The Single Color Scenario
(5) References

Setup

- G_{n} : sequence of graphs on n vertices.

Setup

- G_{n} : sequence of graphs on n vertices.
- Each vertex of G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ many colors, chosen uniformly at random.

Setup

- G_{n} : sequence of graphs on n vertices.
- Each vertex of G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ many colors, chosen uniformly at random.
- H : fixed, connected graph.

Setup

- G_{n} : sequence of graphs on n vertices.
- Each vertex of G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ many colors, chosen uniformly at random.
- H : fixed, connected graph.
- $T\left(H, G_{n}\right)$: Number of monochromatic copies of H in G_{n}.

Setup

- G_{n} : sequence of graphs on n vertices.
- Each vertex of G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ many colors, chosen uniformly at random.
- H : fixed, connected graph.
- $T\left(H, G_{n}\right)$: Number of monochromatic copies of H in G_{n}.

Connection to the Birthday Problem

- In a friendship network, what is the probability that there are r friends with the same birthday?
- Same as asking for the probability of observing a monochromatic r-clique K_{r} in the friendship network graph colored with 365 colors.

Setup

- G_{n} : sequence of graphs on n vertices.
- Each vertex of G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ many colors, chosen uniformly at random.
- H : fixed, connected graph.
- $T\left(H, G_{n}\right)$: Number of monochromatic copies of H in G_{n}.

Connection to the Birthday Problem

- In a friendship network, what is the probability that there are r friends with the same birthday?
- Same as asking for the probability of observing a monochromatic r-clique K_{r} in the friendship network graph colored with 365 colors.
- In a group of m boys and n girls, what is the probability that there is a boy-girl birthday match?
- Equivalent to asking for the probability of observing a monochromatic edge in the bipartite graph $K_{m, n}$ colored using 365 colors.

Background and a Counterexample

- Bhattacharya, Diaconis and Mukherjee (2017) showed that $T\left(K_{2}, G_{n}\right) \xrightarrow{D}$ Poisson (λ), if $\mathbb{E}\left[T\left(K_{2}, G_{n}\right)\right] \rightarrow \lambda$.

Background and a Counterexample

- Bhattacharya, Diaconis and Mukherjee (2017) showed that $T\left(K_{2}, G_{n}\right) \xrightarrow{D}$ Poisson (λ), if $\mathbb{E}\left[T\left(K_{2}, G_{n}\right)\right] \rightarrow \lambda$.
- NOT TRUE FOR GENERAL SUBGRAPHS!

Background and a Counterexample

- Bhattacharya, Diaconis and Mukherjee (2017) showed that $T\left(K_{2}, G_{n}\right) \xrightarrow{D}$ Poisson (λ), if $\mathbb{E}\left[T\left(K_{2}, G_{n}\right)\right] \rightarrow \lambda$.
- NOT TRUE FOR GENERAL SUBGRAPHS!

Figure: The 7-star, $K_{1,7}$

- For fixed r, suppose that $\mathbb{E} T\left(K_{1, r}, K_{1, n}\right) \rightarrow \lambda$ as $n \rightarrow \infty$.

Background and a Counterexample

- Bhattacharya, Diaconis and Mukherjee (2017) showed that $T\left(K_{2}, G_{n}\right) \xrightarrow{D}$ Poisson (λ), if $\mathbb{E}\left[T\left(K_{2}, G_{n}\right)\right] \rightarrow \lambda$.
- NOT TRUE FOR GENERAL SUBGRAPHS!

Figure: The 7-star, $K_{1,7}$

- For fixed r, suppose that $\mathbb{E} T\left(K_{1, r}, K_{1, n}\right) \rightarrow \lambda$ as $n \rightarrow \infty$.
- Then, $T\left(K_{1, r}, G_{n}\right) \xrightarrow{D}\binom{X}{r}$, where $X \sim \operatorname{Pois}\left((r!\lambda)^{\frac{1}{r}}\right)$.

Outline

(1) Introduction

(2) Asymptotic Results

(3) Application to Erdős-Renyi Random Graphs

4 The Single Color Scenario
(5) References

The Second Moment Phenomenon

- G_{n} : growing sequence of graphs with vertices colored independently and uniformly using $c_{n}(\rightarrow \infty)$ colors.

The Second Moment Phenomenon

- G_{n} : growing sequence of graphs with vertices colored independently and uniformly using $c_{n}(\rightarrow \infty)$ colors.
- H: fixed, connected graph.

The Second Moment Phenomenon

- G_{n} : growing sequence of graphs with vertices colored independently and uniformly using $c_{n}(\rightarrow \infty)$ colors.
- H : fixed, connected graph.

Theorem (Bhattacharya, Mukherjee, M. (2017))

If G_{n} and H are as above, and $\lambda>0$, then

$$
\lim _{n \rightarrow \infty} \mathbb{E} T\left(H, G_{n}\right)=\lambda \quad \text { and } \quad \lim _{n \rightarrow \infty} \operatorname{Var} T\left(H, G_{n}\right)=\lambda \Longrightarrow T\left(H, G_{n}\right) \xrightarrow{D} \operatorname{Pois}(\lambda)
$$

Further, the converse is true if and only if H is a star-graph.
In fact, if H is not a star-graph, then for every $\lambda>0, \exists$ a sequence of graphs $G_{n}(H)$ and a sequence $c_{n} \rightarrow \infty$, such that

$$
T\left(H, G_{n}(H)\right) \xrightarrow{D} \operatorname{Pois}(\lambda) \quad \text { but } \quad \mathbb{E} T\left(H, G_{n}(H)\right) \nrightarrow \lambda .
$$

Towards a More General Result: A Notation

- $\mathcal{J}_{t}(H)$: (finite) set of all non-isomorphic graphs obtained by merging two copies of H in exactly t vertices $(1 \leq t \leq|V(H)|)$.

Towards a More General Result: A Notation

- $\mathcal{J}_{t}(H)$: (finite) set of all non-isomorphic graphs obtained by merging two copies of H in exactly t vertices $(1 \leq t \leq|V(H)|)$.
- For $H=C_{4}$, the 4 -cycle, the sets $\mathcal{J}_{2}(H)$ and $\mathcal{J}_{4}(H)$ are illustrated below:

Figure: Graphs in the set $\mathcal{J}_{2}\left(C_{4}\right)$

Figure: Graphs in the set $\mathcal{J}_{4}\left(C_{4}\right)$

General Result: Linear Combination of Poissons

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let G_{n} be a sequence of graphs colored uniformly with $c_{n}(\rightarrow \infty)$ colors, such that:

- For every $k \in\left[1, N\left(H, K_{|V(H)|}\right)\right]$, there exists $\lambda_{k} \geq 0$ such that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{\supseteq \supseteq H:|V(F)|=|V(H)|, N(H, F)=k} N_{\text {ind }}\left(F, G_{n}\right)}{c_{n}^{|V(H)|-1}}=\lambda_{k}
$$

- For $t \in[2,|V(H)|-1]$ and every $F \in \mathcal{J}_{t}(H), N\left(F, G_{n}\right)=o\left(c_{n}^{2|V(H)|-t-1}\right)$.

Then

$$
T\left(H, G_{n}\right) \xrightarrow{D} \sum_{k=1}^{N\left(H, K_{|V(H)|}\right)} k X_{k},
$$

where $X_{k} \sim \operatorname{Pois}\left(\lambda_{k}\right)$ and the collection $\left\{X_{k}: 1 \leq k \leq N\left(H, K_{|V(H)|}\right)\right\}$ is independent.

Outline

(1) Introduction

(2) Asymptotic Results
(3) Application to Erdős-Renyi Random Graphs

4 The Single Color Scenario

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.
- If H is unbalanced, define $\lambda(H)=\min _{H_{1} \subset H: \alpha\left(H_{1}\right)>0} \frac{|V(H)|-\left|V\left(H_{1}\right)\right|}{\alpha\left(H_{1}\right)}$, where

$$
\alpha\left(H_{1}\right):=\left|E\left(H_{1}\right)\right|(|V(H)|-1)+|E(H)|\left(\left|V\left(H_{1}\right)\right|-1\right) .
$$

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.
- If H is unbalanced, define $\lambda(H)=\min _{H_{1} \subset H: \alpha\left(H_{1}\right)>0} \frac{|V(H)|-\left|V\left(H_{1}\right)\right|}{\alpha\left(H_{1}\right)}$, where

$$
\alpha\left(H_{1}\right):=\left|E\left(H_{1}\right)\right|(|V(H)|-1)+|E(H)|\left(\left|V\left(H_{1}\right)\right|-1\right) .
$$

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let H be a simple connected graph, and $G_{n} \sim G(n, p(n))$ be the Erdős-Rényi random graph with $p(n) \in(0,1)$ colored with $c_{n}(\rightarrow \infty)$ colors, such that $\mathbb{E} T\left(H, G_{n}\right) \rightarrow \lambda$.

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.
- If H is unbalanced, define $\lambda(H)=\min _{H_{1} \subset H: \alpha\left(H_{1}\right)>0} \frac{|V(H)|-\left|V\left(H_{1}\right)\right|}{\alpha\left(H_{1}\right)}$, where

$$
\alpha\left(H_{1}\right):=\left|E\left(H_{1}\right)\right|(|V(H)|-1)+|E(H)|\left(\left|V\left(H_{1}\right)\right|-1\right) .
$$

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let H be a simple connected graph, and $G_{n} \sim G(n, p(n))$ be the Erdős-Rényi random graph with $p(n) \in(0,1)$ colored with $c_{n}(\rightarrow \infty)$ colors, such that $\mathbb{E} T\left(H, G_{n}\right) \rightarrow \lambda$.

- If $p(n) \rightarrow 0$ and $p(n) \ll n^{-\lambda(H)}$, then $T\left(H, G_{n}\right) \xrightarrow{P} 0$.

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.
- If H is unbalanced, define $\lambda(H)=\min _{H_{1} \subset H: \alpha\left(H_{1}\right)>0} \frac{|V(H)|-\left|V\left(H_{1}\right)\right|}{\alpha\left(H_{1}\right)}$, where

$$
\alpha\left(H_{1}\right):=\left|E\left(H_{1}\right)\right|(|V(H)|-1)+|E(H)|\left(\left|V\left(H_{1}\right)\right|-1\right) .
$$

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let H be a simple connected graph, and $G_{n} \sim G(n, p(n))$ be the Erdős-Rényi random graph with $p(n) \in(0,1)$ colored with $c_{n}(\rightarrow \infty)$ colors, such that $\mathbb{E} T\left(H, G_{n}\right) \rightarrow \lambda$.

- If $p(n) \rightarrow 0$ and $p(n) \ll n^{-\lambda(H)}$, then $T\left(H, G_{n}\right) \xrightarrow{P} 0$.
- If $p(n) \rightarrow 0$ and $p(n) \gg n^{-\lambda(H)}$, then $T\left(H, G_{n}\right) \xrightarrow{D} \operatorname{Pois}(\lambda)$.

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

- If the fixed graph H is balanced, define $\lambda(H)=\frac{|V(H)|}{|E(H)|}$.
- If H is unbalanced, define $\lambda(H)=\min _{H_{1} \subset H: \alpha\left(H_{1}\right)>0} \frac{|V(H)|-\left|V\left(H_{1}\right)\right|}{\alpha\left(H_{1}\right)}$, where

$$
\alpha\left(H_{1}\right):=\left|E\left(H_{1}\right)\right|(|V(H)|-1)+|E(H)|\left(\left|V\left(H_{1}\right)\right|-1\right) .
$$

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let H be a simple connected graph, and $G_{n} \sim G(n, p(n))$ be the Erdős-Rényi random graph with $p(n) \in(0,1)$ colored with $c_{n}(\rightarrow \infty)$ colors, such that $\mathbb{E} T\left(H, G_{n}\right) \rightarrow \lambda$.

- If $p(n) \rightarrow 0$ and $p(n) \ll n^{-\lambda(H)}$, then $T\left(H, G_{n}\right) \xrightarrow{P} 0$.
- If $p(n) \rightarrow 0$ and $p(n) \gg n^{-\lambda(H)}$, then $T\left(H, G_{n}\right) \xrightarrow{D} \operatorname{Pois}(\lambda)$.
- If $p(n)=p \in(0,1)$ is fixed, then

$$
T\left(H, G_{n}\right) \xrightarrow{D} \sum_{F \supseteq H:|V(F)|=|V(H)|} N(H, F) X_{F},
$$

where $X_{F} \sim \operatorname{Pois}\left(\lambda \cdot \frac{\mid \operatorname{Aut(H)|}}{|\operatorname{Aut}(F)|} p^{|E(F)|-|E(H)|}(1-p)^{\binom{|V(H)|}{2}-|E(F)|}\right)$, independent.

Outline

(1) Introduction

(2) Asymptotic Results

(3) Application to Erdős-Renyi Random Graphs

(4) The Single Color Scenario
(5) References

Large Deviation in a Different Scenario

- Vertices of G_{n} are colored red with probability p, independently.

Large Deviation in a Different Scenario

- Vertices of G_{n} are colored red with probability p, independently.
- $S\left(H, G_{n}\right)$: Number of copies of H in G_{n} with all vertices colored red.

Large Deviation in a Different Scenario

- Vertices of G_{n} are colored red with probability p, independently.
- $S\left(H, G_{n}\right)$: Number of copies of H in G_{n} with all vertices colored red.
- Assume that the number of copies of H in G_{n} is $N\left(H, G_{n}\right)=\Omega\left(n^{|V(H)|}\right)$.

Large Deviation in a Different Scenario

- Vertices of G_{n} are colored red with probability p, independently.
- $S\left(H, G_{n}\right)$: Number of copies of H in G_{n} with all vertices colored red.
- Assume that the number of copies of H in G_{n} is $N\left(H, G_{n}\right)=\Omega\left(n^{|V(H)|}\right)$.

Theorem (Bhattacharya, M. (2018))

Suppose that $p=\Omega\left(n^{-\alpha}\right)$ for some $0<\alpha<1 /\left[6\left(2|V(H)|^{2}+|V(H)|\right)\right]$. Define:

$$
\begin{aligned}
f\left(y_{1}, \ldots, y_{n}\right) & =\frac{1}{p^{|V(H)|} N\left(H, G_{n}\right)|\operatorname{Aut}(H)|} \sum_{\mathbf{u} \in V\left(G_{n}\right)_{|V(H)|}} \prod_{i=1}^{|V(H)|} y_{i} \prod_{(a, b) \in E(H)} a_{u_{a}, u_{b}}\left(G_{n}\right), \\
\phi_{p}(t) & =\inf _{\mathbf{y} \in[0,1]^{n}}\left\{\sum_{i=1}^{n} y_{i} \log \frac{y_{i}}{p}+\left(1-y_{i}\right) \log \frac{1-y_{i}}{1-p}: f(\mathbf{y}) \geq t\right\} .
\end{aligned}
$$

Then, for $t \in\left(1, \liminf _{n \rightarrow \infty} p^{-|V(H)|}\right)$,

$$
\lim _{n \rightarrow \infty} \frac{\log \mathbb{P}\left(S\left(H, G_{n}\right) \geq t \mathbb{E}\left[S\left(H, G_{n}\right)\right]\right)}{-\phi_{p}(t)}=1
$$

Making the Variational Problem n-Free:

- If G_{n} converges in cut metric to a graphon W, and p is fixed,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S\left(H, G_{n}\right) \geq t \mathbb{E}\left[S\left(H, G_{n}\right)\right]\right) \\
= & -\inf _{h:[0,1] \mapsto[0,1], \mathrm{m}^{\prime} \mathrm{ble}}\left\{\int_{0}^{1} I_{p}(h): t(F, W, h) \geq t p^{|V(F)|} t(F, W)\right\},
\end{aligned}
$$

where $I_{p}(h):=h \log \frac{h}{p}+(1-h) \log \frac{1-h}{1-p}$,

$$
t(F, W, h)=\int_{[0,1]^{|V(F)| \mid}} \prod_{(i, j) \in \in E(F)} W\left(x_{i}, x_{j}\right) \prod_{i=1}^{|V(F)|} h\left(x_{i}\right) d x_{1} \ldots d x_{|V(F)|}
$$

and $t(F, W)=t(F, W, \mathbf{1})$, where $\mathbf{1}$ denotes the constant function 1 .

Making the Variational Problem n-Free:

- If G_{n} converges in cut metric to a graphon W, and p is fixed,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S\left(H, G_{n}\right) \geq t \mathbb{E}\left[S\left(H, G_{n}\right)\right]\right) \\
= & -\inf _{h:[0,1] \mapsto[0,1], \mathrm{m}^{\prime} \mathrm{ble}}\left\{\int_{0}^{1} I_{p}(h): t(F, W, h) \geq t p^{|V(F)|} t(F, W)\right\},
\end{aligned}
$$

where $I_{p}(h):=h \log \frac{h}{p}+(1-h) \log \frac{1-h}{1-p}$,

$$
t(F, W, h)=\int_{[0,1]^{|V(F)|}} \prod_{(i, j) \in \in E(F)} W\left(x_{i}, x_{j}\right) \prod_{i=1}^{|V(F)|} h\left(x_{i}\right) d x_{1} \ldots d x_{|V(F)|}
$$

and $t(F, W)=t(F, W, \mathbf{1})$, where $\mathbf{1}$ denotes the constant function 1 .

- If the limiting graphon is in the block form $\sum_{i=1}^{d} \sum_{j=1}^{d} W_{i, j} \mathbb{1}_{A_{i} \times A_{j}}$ for some measurable partition A_{1}, \ldots, A_{d} of $[0,1]$, then the $n-f r e e ~ v a r i a t i o n a l ~$ problem above is actually a d - dimensional optimization problem.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.
- If the variational problem has no replica symmetric solution, we call the scenario replica symmetry breaking.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.
- If the variational problem has no replica symmetric solution, we call the scenario replica symmetry breaking.
- In what follows, assume that the graphs G_{n} are regular, $H=K_{2}, r:=\sqrt{t} p$, $I_{p}(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.
- If the variational problem has no replica symmetric solution, we call the scenario replica symmetry breaking.
- In what follows, assume that the graphs G_{n} are regular, $H=K_{2}, r:=\sqrt{t} p$, $I_{p}(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$.
- If the point $\left(r^{2}, I_{p}(r)\right)$ lies on the convex minorant of the function $J_{p}(x):=I_{p}(\sqrt{x})$, there is replica symmetry.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.
- If the variational problem has no replica symmetric solution, we call the scenario replica symmetry breaking.
- In what follows, assume that the graphs G_{n} are regular, $H=K_{2}, r:=\sqrt{t} p$, $I_{p}(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$.
- If the point $\left(r^{2}, I_{p}(r)\right)$ lies on the convex minorant of the function $J_{p}(x):=I_{p}(\sqrt{x})$, there is replica symmetry.
- The function $J_{p}(x)$ is convex if and only if $p \geq\left(1+e^{2}\right)^{-1}$.

Replica Symmetry and Breaking Phenomena:

- A solution f to the infinite dimensional variational problem is called replica symmetric, if f is the constant function.
- If the variational problem has no replica symmetric solution, we call the scenario replica symmetry breaking.
- In what follows, assume that the graphs G_{n} are regular, $H=K_{2}, r:=\sqrt{t} p$, $I_{p}(x)=x \log \frac{x}{p}+(1-x) \log \frac{1-x}{1-p}$.
- If the point $\left(r^{2}, I_{p}(r)\right)$ lies on the convex minorant of the function $J_{p}(x):=I_{p}(\sqrt{x})$, there is replica symmetry.
- The function $J_{p}(x)$ is convex if and only if $p \geq\left(1+e^{2}\right)^{-1}$.
- If $p<\left(1+e^{2}\right)^{-1}$ and the point $\left(r^{2}, I_{p}(r)\right)$ does not lie on the convex minorant of the function $J_{p}(x)$, we can construct examples of dense, regular graphs G_{n} giving rise to replica symmetry breaking.

Outline

(1) Introduction

(2) Asymptotic Results

(3) Application to Erdős-Renyi Random Graphs

4 The Single Color Scenario
(5) References

References

(1) S. Chatterjee and A. Dembo, Nonlinear large deviations, Advances in Mathematics, 2016.
(2) R. Eldan, Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlinear large deviations, arXiv preprint, 2016.
(3) E. Lubetzky, Y. Zhao, On replica symmetry of large deviations in random graphs, Random Structures \& Algorithms, 2014.

- C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vestergombi, Convergent sequence of dense graphs I: Subgraph frequencies, metric properties and testing, Advances in Mathematics, 2009.
- C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós, and K. Vestergombi, Convergent sequence of dense graphs II: Multiway cuts and statistical physics, Annals of Mathematics, 2012.

