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Setup

Gn: sequence of graphs on n vertices.

Each vertex of Gn is colored independently of the others, using one of
cn (→∞) many colors, chosen uniformly at random.

H: fixed, connected graph.

T (H,Gn): Number of monochromatic copies of H in Gn.

Connection to the Birthday Problem

In a friendship network, what is the probability that there are r friends with the
same birthday?

Same as asking for the probability of observing a monochromatic r−clique Kr in the
friendship network graph colored with 365 colors.

In a group of m boys and n girls, what is the probability that there is a boy-girl
birthday match?

Equivalent to asking for the probability of observing a monochromatic edge in the
bipartite graph Km,n colored using 365 colors.
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Background and a Counterexample

Bhattacharya, Diaconis and Mukherjee (2017) showed that T (K2,Gn)
D−→

Poisson(λ), if E [T (K2,Gn)]→ λ.

NOT TRUE FOR GENERAL SUBGRAPHS !

Figure: The 7-star, K1,7

For fixed r , suppose that ET (K1.,r ,K1,n)→ λ as n→∞.

Then, T (K1,r ,Gn)
D−→
(
X
r

)
, where X ∼ Pois((r !λ)

1
r ).
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The Second Moment Phenomenon

Gn: growing sequence of graphs with vertices colored independently and
uniformly using cn (→∞) colors.

H: fixed, connected graph.

Theorem (Bhattacharya, Mukherjee, M. (2017))

If Gn and H are as above, and λ > 0, then

lim
n→∞

ET (H,Gn) = λ and lim
n→∞

VarT (H,Gn) = λ =⇒ T (H,Gn)
D−→ Pois(λ).

Further, the converse is true if and only if H is a star-graph.
In fact, if H is not a star-graph, then for every λ > 0, ∃ a sequence of graphs Gn(H) and
a sequence cn →∞, such that

T (H,Gn(H))
D−→ Pois(λ) but ET (H,Gn(H)) 9 λ.
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Towards a More General Result: A Notation

Jt(H): (finite) set of all non-isomorphic graphs obtained by merging two
copies of H in exactly t vertices (1 ≤ t ≤ |V (H)|).

For H = C4, the 4−cycle, the sets J2(H) and J4(H) are illustrated below:

Figure: Graphs in the set J2(C4)

Figure: Graphs in the set J4(C4)
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General Result: Linear Combination of Poissons

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let Gn be a sequence of graphs colored uniformly with cn (→∞) colors, such that:

– For every k ∈ [1,N(H,K|V (H)|)], there exists λk ≥ 0 such that

lim
n→∞

∑
F⊇H:|V (F )|=|V (H)|, N(H,F )=k

Nind(F ,Gn)

c
|V (H)|−1
n

= λk ,

– For t ∈ [2, |V (H)| − 1] and every F ∈ Jt(H), N(F ,Gn) = o(c
2|V (H)|−t−1
n ).

Then

T (H,Gn)
D−→

N(H,K|V (H)|)∑
k=1

kXk ,

where Xk ∼ Pois(λk) and the collection {Xk : 1 ≤ k ≤ N(H,K|V (H)|)} is independent.

( University of Pennsylvania) Asymptotics of Motif Counts November 16, 2018 8 / 16



9/ 16

Outline

1 Introduction

2 Asymptotic Results

3 Application to Erdős-Renyi Random Graphs
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A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.

If the fixed graph H is balanced, define λ(H) = |V (H)|
|E(H)| .

If H is unbalanced, define λ(H) = min
H1⊂H:α(H1)>0

|V (H)|−|V (H1)|
α(H1)

, where

α(H1) := |E(H1)|(|V (H)| − 1) + |E(H)|(|V (H1)| − 1).

Theorem (Bhattacharya, Mukherjee, M. (2017))

Let H be a simple connected graph, and Gn ∼ G(n, p(n)) be the Erdős-Rényi random
graph with p(n) ∈ (0, 1) colored with cn(→∞) colors, such that ET (H,Gn)→ λ.

If p(n)→ 0 and p(n) << n−λ(H), then T (H,Gn)
P−→ 0.

If p(n)→ 0 and p(n) >> n−λ(H), then T (H,Gn)
D−→ Pois(λ).

If p(n) = p ∈ (0, 1) is fixed, then

T (H,Gn)
D−→

∑
F⊇H:|V (F )|=|V (H)|

N(H,F )XF ,

where XF ∼ Pois
(
λ · |Aut(H)|
|Aut(F )| p

|E(F )|−|E(H)|(1− p)(
|V (H)|

2 )−|E(F )|
)

, independent.
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graph with p(n) ∈ (0, 1) colored with cn(→∞) colors, such that ET (H,Gn)→ λ.

If p(n)→ 0 and p(n) << n−λ(H), then T (H,Gn)
P−→ 0.

If p(n)→ 0 and p(n) >> n−λ(H), then T (H,Gn)
D−→ Pois(λ).

If p(n) = p ∈ (0, 1) is fixed, then

T (H,Gn)
D−→

∑
F⊇H:|V (F )|=|V (H)|

N(H,F )XF ,

where XF ∼ Pois
(
λ · |Aut(H)|
|Aut(F )| p

|E(F )|−|E(H)|(1− p)(
|V (H)|

2 )−|E(F )|
)

, independent.

( University of Pennsylvania) Asymptotics of Motif Counts November 16, 2018 10 / 16



10/ 16

A Phase Transition in Erdős-Rényi Random Graphs

Our results can be applied to Erdős-Rényi random graphs.
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Large Deviation in a Different Scenario

Vertices of Gn are colored red with probability p, independently.

S(H,Gn) : Number of copies of H in Gn with all vertices colored red.

Assume that the number of copies of H in Gn is N(H,Gn) = Ω
(
n|V (H)|) .

Theorem (Bhattacharya, M. (2018))

Suppose that p = Ω(n−α) for some 0 < α < 1/[6(2|V (H)|2 + |V (H)|)]. Define:

f (y1, . . . , yn) =
1

p|V (H)|N(H,Gn)|Aut(H)|
∑

u∈V (Gn)|V (H)|

|V (H)|∏
i=1

yi
∏

(a,b)∈E(H)

aua,ub(Gn) ,

φp(t) = inf
y∈[0,1]n

{
n∑

i=1

yi log
yi
p

+ (1− yi ) log
1− yi
1− p

: f (y) ≥ t

}
.

Then, for t ∈ (1, lim infn→∞ p−|V (H)|),

lim
n→∞

logP (S(H,Gn) ≥ t E [S(H,Gn)])

−φp(t)
= 1 .
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(
n|V (H)|) .

Theorem (Bhattacharya, M. (2018))

Suppose that p = Ω(n−α) for some 0 < α < 1/[6(2|V (H)|2 + |V (H)|)]. Define:

f (y1, . . . , yn) =
1

p|V (H)|N(H,Gn)|Aut(H)|
∑

u∈V (Gn)|V (H)|

|V (H)|∏
i=1

yi
∏

(a,b)∈E(H)

aua,ub(Gn) ,

φp(t) = inf
y∈[0,1]n

{
n∑

i=1

yi log
yi
p

+ (1− yi ) log
1− yi
1− p

: f (y) ≥ t

}
.

Then, for t ∈ (1, lim infn→∞ p−|V (H)|),

lim
n→∞

logP (S(H,Gn) ≥ t E [S(H,Gn)])

−φp(t)
= 1 .
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Making the Variational Problem n−Free:

If Gn converges in cut metric to a graphon W , and p is fixed,

lim
n→∞

1

n
logP (S(H,Gn) ≥ t E [S(H,Gn)])

= − inf
h:[0,1]7→[0,1],m′ble

{∫ 1

0

Ip(h) : t(F ,W , h) ≥ tp|V (F )|t(F ,W )

}
,

where Ip(h) := h log h
p + (1− h) log 1−h

1−p ,

t(F ,W , h) =

∫
[0,1]|V (F )|

∏
(i,j)∈∈E(F )

W (xi , xj)

|V (F )|∏
i=1

h(xi ) dx1 . . . dx|V (F )| ,

and t(F ,W ) = t(F ,W , 1), where 1 denotes the constant function 1.

If the limiting graphon is in the block form
∑d

i=1

∑d
j=1 Wi,j1Ai×Aj for some

measurable partition A1, . . . ,Ad of [0, 1], then the n − free variational
problem above is actually a d− dimensional optimization problem.
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Replica Symmetry and Breaking Phenomena:

A solution f to the infinite dimensional variational problem is called replica
symmetric, if f is the constant function.

If the variational problem has no replica symmetric solution, we call the
scenario replica symmetry breaking.

In what follows, assume that the graphs Gn are regular, H = K2, r :=
√
tp,

Ip(x) = x log x
p + (1− x) log 1−x

1−p .

If the point
(
r2, Ip(r)

)
lies on the convex minorant of the function

Jp(x) := Ip
(√

x
)
, there is replica symmetry.

The function Jp(x) is convex if and only if p ≥
(
1 + e2

)−1
.

If p <
(
1 + e2

)−1
and the point

(
r2, Ip(r)

)
does not lie on the convex

minorant of the function Jp(x), we can construct examples of dense, regular
graphs Gn giving rise to replica symmetry breaking.
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