POISSON LIMIT OF THE NUMBER OF MONOCHROMATIC CLIQUES

Somabha Mukherjee ${ }^{1}$ and Bhaswar B. Bhattacharya ${ }^{2}$
University of Pennsylvania

July 5, 2017

[^0]
Outline

(1) Introduction

(2) Sketch of Proof
(3) Conclusion

4 Bibliography

Our Setup

- Each of the vertices $\{1, \ldots, n\}$ of a simple, undirected non-random graph G_{n} is colored independently of the others, using one of $c_{n}(\rightarrow \infty)$ different colors, chosen uniformly at random.
- We shall denote the color of vertex i by X_{i}.
- $T\left(K_{m}, G_{n}\right)$ (m fixed) : Number of monochromatic m-cliques in G_{n}.
- Assumptions:
(1) $\lim _{n \rightarrow \infty} \mathbb{E} T\left(K_{m}, G_{n}\right)=\lambda \in(0, \infty)$,
(2) $\lim _{n \rightarrow \infty} \mathbb{V} T\left(K_{m}, G_{n}\right)=\lambda$.
- We proved:

$$
T\left(K_{m}, G_{n}\right) \xrightarrow{d} \operatorname{Pois}(\lambda) \text { as } n \rightarrow \infty .
$$

- We could actually prove the same Poisson convergence result for $T\left(H, G_{n}\right)$: the number of copies of a fixed connected graph H on m vertices in G_{n}, under the same conditions on $\mathbb{E} T\left(H, G_{n}\right)$ and $\mathbb{V} T\left(H, G_{n}\right)$.

Existing Literature

- Bhattacharya, Diaconis and Mukherjee [1] showed that under the uniform coloring scheme, the number of monochromatic edges $T\left(K_{2}, G_{n}\right)$ of a random graph G_{n} (under any arbitrary probability distribution) converges weakly to Pois (λ), if we only assume that $\mathbb{E}\left(T\left(K_{2}, G_{n}\right) \mid G_{n}\right) \xrightarrow{d} \lambda$.
- Their result is more general, in the sense that they actually proved that if $\mathbb{E}\left(T\left(K_{2}, G_{n}\right) \mid G_{n}\right)$ converges weakly to a random variable Z, then $T\left(K_{2}, G_{n}\right) \xrightarrow{d} W$, where W is a Z-mixture of Poisson random variables, i.e.

$$
\mathbb{P}(W=k)=\frac{1}{k!} \mathbb{E}\left(e^{-z} Z^{k}\right)
$$

- Bhattacharya and Mukherjee [2] established the Poisson convergence result for the number of monochromatic triangles and 2 -stars, under the same setup, but with the first two moment assumptions same as ours.
- Our work provides a complete answer to their first open problem, where they ask whether the same phenomenon extends to other connected monochromatic subgraphs.

Outline

(1) Introduction

(2) Sketch of Proof
(3) Conclusion

4 Bibliography

What do the Two Assumptions Imply?

- $T\left(K_{m}, G_{n}\right)=\sum_{H \in \Lambda_{m}\left(G_{n}\right)} 1(H$ is monochromatic $)$, where $\Lambda_{m}\left(G_{n}\right)$ is the set of all m-cliques in G_{n}.
- Let $N\left(K_{m}, G_{n}\right)=$ number of m-cliques in $G_{n}=\left|\Lambda_{m}\left(G_{n}\right)\right|$.
- $\mathbb{E} T\left(K_{m}, G_{n}\right)=\frac{N\left(K_{m}, G_{n}\right)}{c_{n}^{m-1}}$,
$\mathbb{V} T\left(K_{m}, G_{n}\right)=\frac{1}{c_{n}^{m-1}}\left(1-\frac{1}{c_{n}^{m-1}}\right) N\left(K_{m}, G_{n}\right)+\sum_{k=2}^{m-1} \frac{1}{c_{n}^{2 m-k-1}}\left(1-\frac{1}{c_{n}^{k-1}}\right) J_{k}$,
where

$$
J_{k}=\mid\left\{(F, H): F, H \in \Lambda_{m}\left(G_{n}\right) \text { and }|V(F) \cap V(H)|=k\right\} \mid .
$$

- Hence, $N\left(K_{m}, G_{n}\right)=\Theta\left(c_{n}^{m-1}\right)$ and $J_{k}=o\left(c_{n}^{2 m-k-1}\right)(2 \leq k \leq m-1)$.

A Decomposition of the Number of Monochromatic m-cliques

- For evey $2 \leq k \leq m-1$ and every tuple (i_{1}, \ldots, i_{k}) of distinct vertices of G_{n}, let $\gamma_{k}\left(i_{1}, \ldots, i_{k}\right)$ be the number of m-cliques having i_{1}, \ldots, i_{k} as vertices.
- For each $\epsilon>0$, define:
$A_{n, \epsilon}=\left\{H \in \Lambda_{m}\left(G_{n}\right): \gamma_{k}\left(H_{i_{1}}, \ldots, H_{i_{k}}\right) \leq \epsilon c_{n}^{m-k} \forall 2 \leq k \leq m-1, \forall 1 \leq i_{1}<\ldots<i_{k} \leq m\right\}$, where for a graph H with m vertices, the vertices are ordered as $H_{1}<\ldots<H_{m}$.
- Let $T_{1, \epsilon}\left(K_{m}, G_{n}\right)=\sum_{H \in A_{n, \epsilon}} 1(H$ is monochromatic $)$ and

$$
T_{2, \epsilon}\left(K_{m}, G_{n}\right)=T\left(K_{m}, G_{n}\right)-T_{1, \epsilon}\left(K_{m}, G_{n}\right) .
$$

- We will show that $T_{1, \epsilon}\left(K_{m}, G_{n}\right) \xrightarrow{d} \operatorname{Pois}(\lambda)$ and $T_{2, \epsilon}\left(K_{m}, G_{n}\right) \xrightarrow{P} 0$ as $n \rightarrow \infty$ followed by $\epsilon \rightarrow 0$.

$T_{2, \epsilon}\left(K_{m}, G_{n}\right)$ converges to 0 in L^{1}

- To begin with, note that

$$
\leq \sum_{i_{1}, \ldots, i_{m}} \prod_{(k, l) \in\langle m\rangle} a_{i_{k} i_{j}}\left(G_{n}\right) \mathbf{1}\left(X_{i_{1}}=\ldots=X_{i_{m}}\right) \sum_{q=2}^{m-1} \mathbf{1}\left(\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)>\epsilon c_{n}^{m-q}\right) .
$$

- Let us introduce the notation $\langle m\rangle=\left\{(a, b) \in\{1,2, \ldots, m\}^{2}: a<b\right\}$.
- Hence, for sufficiently large n (for example, when $\epsilon c_{n}>2$), we have:

$$
\begin{aligned}
& \mathbb{E} T_{2, \epsilon}\left(K_{m}, G_{n}\right) \\
\leq & \frac{1}{c_{n}^{m-1}} \sum_{i_{1}, \ldots, i_{m}} \prod_{(k, l) \in\langle m\rangle} a_{i_{k} i^{\prime}}\left(G_{n}\right) \sum_{q=2}^{m-1} \mathbf{1}\left(\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)>\epsilon c_{n}^{m-q}\right) \\
\leq & \frac{1}{c_{n}^{m-1}} \sum_{q=2}^{m-1} \sum_{i_{1}, \ldots, i_{q}} \prod_{(k, l) \in\langle q\rangle} a_{i_{k} i_{j}}\left(G_{n}\right) \frac{\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)}{\epsilon c_{n}^{m-q}} \mathbf{1}\left(\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)>\epsilon c_{n}^{m-q}\right) \\
& \sum_{i_{q+1}, \ldots, i_{m}} \prod_{(k, l) \in\langle m\rangle \backslash\langle q\rangle} a_{i_{k} i_{l}}\left(G_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim \sum_{q=2}^{m-1} \sum_{i_{1}, \ldots, i_{q}(k, l) \in(q)} \prod_{k i k i} a_{i}\left(G_{n}\right) \frac{\left[\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)\right]^{2}}{\epsilon c_{n}^{2 m-q-1}} \mathbf{1}\left(\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)>\epsilon C_{n}^{m-q}\right) \\
& \lesssim \sum_{q=2}^{m-1}\left[\frac{1}{\epsilon c_{n}^{2 m-q-1}} \sum_{i_{1}, \ldots, i_{q}(\kappa, l) \in\langle q\rangle} \prod_{i k i} a_{i}\binom{\gamma_{q}\left(i_{1}, \ldots, i_{q}\right)}{2}\right] \\
& \lesssim \sum_{q=2}^{m-1}\left[\frac{1}{\epsilon c_{n}^{2 m-q-1}} \sum_{t=q}^{m-1} J_{t}\right] \\
& =\sum_{q=2}^{m-1} \frac{o\left(c_{n}^{2 m-q-1}\right)}{\epsilon c_{n}^{2 m-q-1}} \\
& =o(1) .
\end{aligned}
$$

Binomial Approximation of $T_{1, ¢}\left(K_{m}, G_{n}\right)$

- Let $\left\{Z_{i_{1}, \ldots, i_{m}}: i_{1}<\ldots<i_{m}\right\}$ be a collection of i.i.d. $\operatorname{Ber}\left(c_{n}^{1-m}\right)$ random variables, and define

$$
\begin{aligned}
& W_{m, \epsilon}\left(G_{n}\right)=\sum_{i_{1}<i_{2}<\ldots<i_{m}(k, l) \in\langle m\rangle} a_{i_{k} i_{l}}\left(G_{n}\right) Z_{i_{1}, \ldots, i_{m}} \\
& \mathbf{1}\left(\gamma_{q}\left(i_{1}, \ldots, i_{q}\right) \leq \epsilon c_{n}^{m-q} \forall 2 \leq q \leq m-1, \forall 1 \leq i_{1}<\ldots<i_{q} \leq m\right)
\end{aligned}
$$

- For any other permutation $\left(j_{1}, \ldots, j_{m}\right)$ of $\left(i_{1}, \ldots, i_{m}\right)$, set $Z_{j_{1}, \ldots, j_{m}}=Z_{i_{1}, \ldots, i_{m}}$.
- Our next target is to show that for every natural number r, the $r^{\text {th }}$ moments of $T_{1, \epsilon}\left(K_{m}, G_{n}\right)$ and $W_{m, \epsilon}\left(G_{n}\right)$ are asymptotically close as $n \rightarrow \infty$ followed by $\epsilon \rightarrow 0$. But HOW DOES THIS HELP?
- Well, it is a simple method of moments argument! Observe that $W_{m, \epsilon}\left(G_{n}\right) \sim$ $\operatorname{Bin}\left(\left|A_{n, \epsilon}\right|, c_{n}^{1-m}\right)$. We know that $N\left(K_{m}, G_{n}\right) c_{n}^{1-m} \rightarrow \lambda$.
- Now, $\frac{N\left(K_{m}, G_{m}\right)-\left|A_{n, \epsilon}\right|}{c_{n}^{m-1}}=\mathbb{E} T_{2, \epsilon}\left(K_{m}, G_{n}\right) \rightarrow 0$. So, $\left|A_{n, \epsilon}\right| c_{n}^{1-m} \rightarrow \lambda$.
- Hence, $\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r} \rightarrow \mathbb{E P o i s}(\lambda)^{r}$ for every natural number r.

Expressions for $r^{\text {th }}$ Moments

- $\mathbb{E} T_{1, \epsilon}\left(K_{m}, G_{n}\right)^{r}=\sum_{H^{(1)} \in A_{n, \epsilon}} \ldots \sum_{H^{(r)} \in A_{n, \epsilon}} \mathbb{E}\left(\prod_{i=1}^{r} \mathbf{1}\left(H^{(i)}\right.\right.$ is monochromatic $\left.)\right)$.
- $\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r}=\sum_{H^{(1)} \in A_{n, \epsilon}} \ldots \sum_{H^{(r)} \in A_{n, \epsilon}} \mathbb{E}\left(\prod_{i=1}^{r} Z_{H_{1}^{(i)}, \ldots, H_{m}^{(i)}}\right)$.
- Let $\Gamma_{r}=\left\{\left(H^{(1)}, \ldots, H^{(r)}\right): H^{(i)} \in A_{n, \epsilon} \forall 1 \leq i \leq r\right\}$.
- For each $A=\left(H^{(1)}, \ldots, H^{(r)}\right) \in \Gamma_{r}$, let $H(A)=\bigcup_{i=1}^{r} H^{(i)}$ in the graph union sense, and let $a(A)=\left|\left\{H^{(1)}, \ldots, H^{(r)}\right\}\right|$, i.e. the number of distinct graphs among $H^{(1)}, \ldots, H^{(r)}$.
- Let $\nu(H)$ denotes the number of connected components of a graph H. In these notations, $\mathbb{E} T_{1, \epsilon}\left(K_{m}, G_{n}\right)^{r}=\sum_{A \in \Gamma_{r}}\left(\frac{1}{c_{n}}\right)^{|V(H(A))|-\nu(H(A))}$ and $\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r}=\sum_{A \in \Gamma_{r}}\left(\frac{1}{c_{n}}\right)^{(m-1) a(A)}$.

Closeness of the $r^{\text {th }}$ Moments

- From the previous slide, we get that:

$$
\left|\mathbb{E} T_{1, \epsilon}\left(K_{m}, G_{n}\right)^{r}-\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r}\right| \leq \sum_{A \in \Gamma_{r}}\left|\left(\frac{1}{c_{n}}\right)^{(m-1) a(A)}-\left(\frac{1}{c_{n}}\right)^{|V(H(A))|-\nu(H(A))}\right| .
$$

- For any $A \in \Gamma_{r}$, it can be shown that:

$$
(m-1) a(A) \geq|V(H(A))|-\nu(H(A)) .
$$

- We showed that the number of tuples $A \in \Gamma_{r}$ with $|V(H(A))|=v$ and $\nu(H(A))=\nu$, for which the above inequality is strict, is $\epsilon O\left(c_{n}^{v-\nu}\right)$.
- Since v and ν can take only a bounded number of values, the $r^{\text {th }}$ moment difference is seen to be $\epsilon\left|O_{n}(1)-o_{n}(1)\right|=\epsilon O_{n}(1)$.
- This shows that $\mathbb{E} T_{1, \epsilon}\left(K_{m}, G_{n}\right)^{r}-\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r}$ converge to 0 , as $n \rightarrow \infty$, followed by $\epsilon \rightarrow 0$, thereby completing the proof.
- The details are sketched in the next few slides.

Further Details

- For each $1 \leq a \leq r, m \leq v \leq m r$ and $1 \leq \nu \leq r$, define

$$
\begin{equation*}
\Gamma_{a, v, \nu}^{r}=\left\{A \in \Gamma_{r}: a(A)=a,|V(H(A))|=v \text { and } \nu(H(A))=\nu\right\} \tag{1}
\end{equation*}
$$

- Then, we have:

$$
\begin{aligned}
& \left|\mathbb{E} T_{1, \epsilon}\left(K_{m}, G_{n}\right)^{r}-\mathbb{E} W_{m, \epsilon}\left(G_{n}\right)^{r}\right| \\
\leq & \sum_{a=1}^{r} \sum_{v=m}^{m r} \sum_{\nu=1}^{r} \sum_{A \in \Gamma_{a, v, \nu}^{r}}\left|\left(\frac{1}{c_{n}}\right)^{(m-1)_{a}}-\left(\frac{1}{c_{n}}\right)^{v-\nu}\right| \\
= & \sum_{a=1}^{r} \sum_{v=m}^{m r} \sum_{\nu=1}^{r}\left|\left(\frac{1}{c_{n}}\right)^{(m-1)_{a}}-\left(\frac{1}{c_{n}}\right)^{v-\nu}\right|\left|\Gamma_{a, v, \nu}^{r}\right|
\end{aligned}
$$

- It thus suffices to show that for every fixed $1 \leq a \leq r, m \leq v \leq m r$ and $1 \leq \nu \leq r$,

$$
\left|\left(\frac{1}{c_{n}}\right)^{(m-1) a}-\left(\frac{1}{c_{n}}\right)^{v-\nu}\right|\left|\Gamma_{a, v, \nu}^{r}\right| \rightarrow 0
$$

as $n \rightarrow \infty$ followed by $\epsilon \rightarrow 0$.

A Useful Lemma

- Lemma: Let $A=\left(H^{(1)}, \ldots, H^{(s)}\right) \in \Gamma_{s}$ for some natural number s, and suppose that $H(A)$ is connected. Then, one of the following two always holds: (1) There exists an ordering $\left(G^{(1)}, \ldots, G^{(s)}\right)$ of $\left(H^{(1)}, \ldots, H^{(s)}\right)$ such that for each $2 \leq t \leq s$, either

$$
\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right|=1
$$

or $G^{(t)}$ equals one of $G^{(1)}, \ldots, G^{(t-1)}$.
(2) There exists an ordering $\left(G^{(1)}, \ldots, G^{(s)}\right)$ of $\left(H^{(1)}, \ldots, H^{(s)}\right)$ such that

$$
\begin{gathered}
\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right| \geq 1 \forall 2 \leq t \leq s \text { and } \\
2 \leq\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right| \leq m-1 \text { for some } 2 \leq t \leq s .
\end{gathered}
$$

- Let $A=\left(G^{(1)}, \ldots, G^{(s)}\right) \in \Gamma_{s} \&\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right| \geq 1 \forall 2 \leq t \leq s$. For each $k=1,2, \ldots, m-1$, define

$$
s_{k}=\left|\left\{2 \leq t \leq s:\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right|=m-k\right\}\right|
$$

Also, define
$s_{0}=\left|\left\{2 \leq t \leq s:\left|V\left(G^{(t)}\right) \cap \cup_{u=1}^{t-1} V\left(G^{(u)}\right)\right|=m, G^{(t)} \notin\left\{G^{(1)}, \ldots, G^{(t-1)}\right\}\right\}\right|$.
Now, we have:

$$
\begin{aligned}
|V(H(G))| & =m+\sum_{k=1}^{m-1} k s_{k} \text { and } \\
a(G) & =1+\sum_{k=0}^{m-1} s_{k} .
\end{aligned}
$$

Hence, we have:

$$
|V(H(G))| \leq m+(m-1) \sum_{k=1}^{m-1} s_{k} \leq(m-1) a(G)+1,
$$

with equality holding if and only if $s_{0}=s_{1}=\ldots=s_{m-2}=0$.

- If $\Gamma_{a, v, \nu}^{r}$ is empty, or contains an A with the property that each of the connected components $(H(A))_{1}, \ldots,(H(A))_{\nu}$ of $H(A)$, expressed as tuples A_{1}, \ldots, A_{ν}, satisfies case (1) of the lemma, then

$$
\left|\left(\frac{1}{c_{n}}\right)^{(m-1) a}-\left(\frac{1}{c_{n}}\right)^{v-\nu}\right|\left|\Gamma_{a, v, \nu}^{r}\right|=0
$$

- So, suppose that for every element A of $\Gamma_{a, v, \nu}^{r}$, there exists $1 \leq i \leq \nu$, such that A_{i} satisfies case (2) of the lemma.
- For each $A_{i}(1 \leq i \leq \nu)$, denote the quantities s_{0}, \ldots, s_{m-1} for A_{i} as $s_{0}^{i}, \ldots, s_{m-1}^{i}$, respectively.
- So, for a fixed array of quantities $\left(s_{j}^{i}\right)_{0 \leq j \leq m-1,1 \leq i \leq \nu}$, the number of elements of $\Gamma_{a, v, \nu}^{r}$ corresponding to these array, is \leq (upto constant multiples):

$$
\begin{aligned}
& \prod_{k=1}^{\nu} N\left(K_{m}, G_{n}\right)^{1+s_{m-1}^{k}} \prod_{u=1}^{m-2}\left(\epsilon C_{n}^{u}\right)^{s_{u}^{k}} \\
\lesssim & \epsilon^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-2} s_{u}^{k}} C_{n}^{(m-1)\left(\nu+\sum_{k=1}^{\nu} s_{m-1}^{k}\right)} C_{n}^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-2} u s_{u}^{k}} \\
\leq & \epsilon C_{n}^{\sum_{k=1}^{\nu} \sum_{u=1}^{m-1} u s_{u}^{k}+(m-1) \nu} \\
= & \epsilon C_{n}^{v-\nu} .
\end{aligned}
$$

Completing the Calculation for $T_{1, \epsilon}$

- Since the array $\left(s_{j}^{i}\right)_{0 \leq j \leq m-1,1 \leq i \leq \nu}$ is constrained within the finite set $\{0, \ldots, r\}^{m \times \nu}$, we conclude that

$$
\left|\Gamma_{a, v, \nu}^{r}\right| \leq r m \nu \epsilon C_{n}^{v-\nu} \lesssim \epsilon C_{n}^{v-\nu} .
$$

- Hence, $\left|\left(\frac{1}{c_{n}}\right)^{(m-1) a}-\left(\frac{1}{c_{n}}\right)^{v-\nu}\right|\left|\Gamma_{a, v, \nu}^{r}\right| \lesssim \epsilon\left|1-c_{n}^{v-\nu-(m-1) a}\right|$.
- Clearly, the right hand side of the last inequality goes to 0 as $n \rightarrow \infty$ followed by $\epsilon \rightarrow 0$.
- This completes the entire proof!

Outline

(1) Introduction
(2) Sketch of Proof
(3) Conclusion

4 Bibliography

Concluding Remarks

- The truncation we performed on the number of m-cliques supported by every tuple of distinct vertices of an m-clique in G_{n}, is crucial for the closeness of the moments of the main term $T_{1, \epsilon}\left(K_{m}, G_{n}\right)$ and the corresponding Binomial variable $W_{m, \epsilon}\left(G_{n}\right)$, and at the same time, ensures that the remainder term $T_{2, \epsilon}\left(K_{m}, G_{n}\right)$ is $o_{\mathbb{P}}(1)$.
- The proof for the Poisson limit of the number of monochromatic copies of an arbitrary fixed, connected graph is almost similar to the proof for cliques, barring a few technicalities.
- For example, in the general case, $W_{m, \epsilon}\left(G_{n}\right)=\sum_{F \in A_{n}, \epsilon} Z_{F_{1}, \ldots, F_{n}}$ may not have a Binomial distribution, because of the possibility of the existence of more than one copy of the graph H with the same vertex set. This hampers independence of the summands.
- We dealt with this issue by splitting the above sum into a main term consisting of those copies of H whose vertex sets do not support any other copy, and a remainder term consisting of those copies of H whose vertex sets support at least another copy. We then showed that the remainer term converges to 0 in L^{r} for every natural number r.

Our Most General Result

- The following is the most general result proved by us:

General Result: Let H_{0} be a fixed, connected graph on m vertices and for each $1 \leq k \leq 2\binom{m}{2}$, define:

$$
R_{k}=\mid\left\{S \subseteq V\left(G_{n}\right):|S|=m \text { and } G_{n}[S] \text { contains exactly } k \text { copies of } H_{0}\right\} \mid
$$

Also, for $2 \leq k \leq m-1$, define J_{k} as the number of all ordered pairs of copies of H_{0} in G_{n}, that have k vertices in common. Assume that the following two conditions hold:
(1) $\frac{R_{k}}{c_{n}^{m-1}} \rightarrow \lambda_{k}(\geq 0)$ as $n \rightarrow \infty, \forall 1 \leq k \leq 2^{\binom{m}{2}}$,
(2) $J_{k}=o\left(c_{n}^{2 m-k-1}\right) \forall 2 \leq k \leq m-1$.

Then,

$$
T\left(H_{0}, G_{n}\right) \xrightarrow{d} \sum_{k=1}^{2} k \operatorname{Pois}\left(\lambda_{k}\right)
$$

where the Poisson random variables in the limit are all independent.

Outline

(1) Introduction

(2) Sketch of Proof
(3) Conclusion

4 Bibliography

References

園 Bhattacharya, B. B., Diaconis, P., Mukherjee, S., Universal Poisson and Normal limit theorems in graph coloring problems with connections to extremal combinatorics, Annals of Applied Probability, Vol. 27 (1), 337-394, 2017.

国
Bhattacharya, B. B., Mukherjee, S., Limit theorems for Monochromatic 2-stars and triangles, arXiv version, 2017.

[^0]: ${ }^{1}$ Department of Statistics, University of Pennsylvania
 ${ }^{2}$ Department of Statistics, University of Pennsylvania

